44 research outputs found

    Corticolimbic catecholamines in stress: A computational model of the appraisal of controllability

    Get PDF
    Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model's prediction

    Social threat exposure in juvenile mice promotes cocaine-seeking by altering blood clotting and brain vasculature

    Get PDF
    Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social experience (social stressed, S-S). We showed that S-S experience influenced the propensity to reinstate cocaineseeking after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain microvasculature were observed in S-S mice. Furthermore, treatment with an anticoagulant agent during withdrawal abolished the susceptibility to reinstate cocaine-seeking in S-S mice. These findings provide novel insights into a possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine-dependent individuals

    From traumatic childhood to cocaine abuse: the critical function of the immune system

    Get PDF
    Background: Experiencing traumatic childhood is a risk factor for developing substance use disorder (SUD), but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of SUD in individuals who have experience early life stress is unknown. Methods:In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early-life stress-induced susceptibility to the neurobehavioral effects of cocaine. Results: We provide evidence that exposure to social-stress (S-S) at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area (VTA) of S-S mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine (DA) neurons. Notably, preventing immune activation during the S-S exposure reverted the effects of DA in the VTA and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated Toll-like receptor 4-mediated innate immunity, an effect that was enhanced in cocaine addicts who had experienced a difficult childhood. Conclusions Collectively, our findings demonstrate that sensitization to cocaine in early-life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans

    Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability

    Get PDF
    Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model\u27s predictions

    Quantitative dopamine transporter imaging assessment in Parkinson’s disease (PD) patients carrying GBA gene mutations compared with Idiopathic PD patients: A case-control study

    Get PDF
    Background: Genetic risk factors impact around 15% of Parkinson’s disease (PD) patients and at least 23 variants have been identified including Glucocerebrosidase (GBA) gene variants. Using different clinical and instrumental qualitative-based data, various studies have been published on GBA-PD cohorts which suggested possible differences in dopaminergic nigrostriatal denervation pattern, particularly in caudate and putamen nuclei. Methods: This retrospective study included two consecutive homogenous cohorts of GBA-PD and idiopathic (I-PD) patients. Each consecutive GBA-PD patient has been matched with a 1:1 pairing method with a consecutive I-PD subject according to age, age at disease onset, sex, Hoehn & Yahr (H&Y) staging scale and comorbidity level (CCI). Semiquantitative volumetric data by the DaTQUANTTM software integrated in the DaTSCAN exam performed at time of the diagnosis (SPECT imaging performed according to current guidelines of I-123 FPCIT SPECT imaging) were extrapolated. Bilateral specific binding ratios (SBR) at putamen and caudate levels were calculated, using the occipital lobes uptake. The Mann–Whitney test was performed to compare the two cohorts while the Spearman’s test was used to find correlations between motor and volumetric data in each group. Bonferroni correction was used to account for multiple comparisons. Results: Two cohorts of 25 patients each (GBA-PD and I-PD), were included. By comparing GBA-PD and I-PD patients, lower SBR values were found in the most affected anterior putamen and left caudate of the GBA-PD cohort. Furthermore, in the GBA-PD cohort the SBR of the most affected posterior putamen negatively correlated with the H&Y scale. However, none of these differences or correlations remained significant after Bonferroni correction for multiple comparisons. Conclusions: We observed differences in SBR values in GBA-PD patients compared with I-PD. However, these differences were no longer significant after Bonferroni multiple comparisons correction highlighting the need for larger, longitudinal studies

    Freezing of gait in Parkinson’s disease patients treated with bilateral subthalamic nucleus deep brain stimulation: A long-term overview

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson’s Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (>/=5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and reevaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the preoperative off-medication assessment (z = -1.930; p = 0.05) but not in the on-stimulation/off-medication (z = -0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = -2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG

    Freezing of Gait in Parkinson's Disease Patients Treated with Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Long-Term Overview

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson's Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (≥5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and revaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the pre-operative off-medication assessment (z = -1.930; p = 0.05) but not in the on-stimulation/off-medication (z = -0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = -2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Stress-induced activation of ventral tegmental mu-opioid receptors reduces accumbens dopamine tone by enhancing dopamine transmission in the medial pre-frontal cortex

    No full text
    Rationale Endogenous opioids could play a major role in the mesocorticolimbic dopamine (DA) responses to stress challenge. However, there is still no direct evidence of an influence of endogenous opioids on any of these responses. Objective We assessed whether and how endogenous opioids modulate fluctuations of mesocortical and mesoaccumbens DA tone in rats during a first experience with restraint stress. Method We first evaluated the effects of systemic naltrexone (NTRX) on DA outflow in the medial prefrontal cortex (mpFC) and in the nucleus accumbens (NAc) through dual-probe microdialysis. Second, we assessed the effect of perfusion, through reverse microdialysis, of direct DA receptor agonists in mpFC on NAc DA outflow in NTRX-pretreated stressed rats. Finally, we tested the effects of ventral tegmental area (VTA) perfusion of NTRX, the selective mu1 antagonist naloxonazine and the selective delta antagonist naltrindole on mpFC and NAc DA outflow in stressed rats, with multiple probe experiments. Results Systemic NTRX, at behaviorally effective doses, selectively prevented the increase of mpFC DA levels and the reduction of NAc DA levels observable during prolonged restraint. Local co-perfusion of D1 and D2 agonists in mpFC recovered inhibition of NAc DA in NTRX-pretreated restrained rats. Finally, intra-VTA perfusion of either NTRX or the mu1 antagonist, but not the delta antagonist, mimicked the effects of systemic NTRX. Conclusion During prolonged experience with a novel unavoidable/uncontrollable stressor, endogenous opioids, through stimulation of mu1 receptors in the VTA, elevate mesocortical DA tone thus reducing DA tone in the NAc DA. © 2014 Springer-Verlag Berlin Heidelberg
    corecore